Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Comput Methods Programs Biomed ; 213: 106500, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1556335

ABSTRACT

BACKGROUND AND OBJECTIVE: Research on automatic auscultation diagnosis of COVID-19 has not yet been developed. We therefore aimed to engineer a deep learning approach for the automated grading diagnosis of COVID-19 by pulmonary auscultation analysis. METHODS: 172 confirmed cases of COVID-19 in Tongji Hospital were divided into moderate, severe and critical group. Pulmonary auscultation were recorded in 6-10 sites per patient through 3M littmann stethoscope and the data were transferred to computer to construct the dataset. Convolutional neural network (CNN) were designed to generate classifications of the auscultation. F1 score, the area under the curve (AUC) of the receiver operating characteristic curve, sensitivity and specificity were quantified. Another 45 normal patients were served as control group. RESULTS: There are about 56.52%, 59.46% and 78.85% abnormal auscultation in the moderate, severe and critical groups respectively. The model showed promising performance with an averaged F1 scores (0.9938 95% CI 0.9923-0.9952), AUC ROC score (0.9999 95% CI 0.9998-1.0000), sensitivity (0.9938 95% CI 0.9910-0.9965) and specificity (0.9979 95% CI 0.9970-0.9988) in identifying the COVID-19 patients among normal, moderate, severe and critical group. It is capable in identifying crackles, wheezes, phlegm sounds with an averaged F1 scores (0.9475 95% CI 0.9440-0.9508), AUC ROC score (0.9762 95% CI 0.9848-0.9865), sensitivity (0.9482 95% CI 0.9393-0.9578) and specificity (0.9835 95% CI 0.9806-0.9863). CONCLUSIONS: Our model is accurate and efficient in automatically diagnosing COVID-19 according to different categories, laying a promising foundation for AI-enabled auscultation diagnosing systems for lung diseases in clinical applications.


Subject(s)
COVID-19 , Algorithms , Artificial Intelligence , Auscultation , Cohort Studies , Humans , ROC Curve , SARS-CoV-2
2.
Computer methods and programs in biomedicine ; 2021.
Article in English | EuropePMC | ID: covidwho-1490298

ABSTRACT

Background and Objective Research on automatic auscultation diagnosis of COVID-19 has not yet been developed. We therefore aimed to engineer a deep learning approach for the automated grading diagnosis of COVID-19 by pulmonary auscultation analysis. Methods 172 confirmed cases of COVID-19 in Tongji Hospital were divided into moderate, severe and critical group. Pulmonary auscultation were recorded in 6-10 sites per patient through 3M littmann stethoscope and the data were transferred to computer to construct the dataset. Convolutional neural network (CNN) were designed to generate classifications of the auscultation. F1 score, the area under the curve (AUC) of the receiver operating characteristic curve, sensitivity and specificity were quantified. Another 45 normal patients were served as control group. Results There are about 56.52%, 59.46% and 78.85% abnormal auscultation in the moderate, severe and critical groups respectively. The model showed promising performance with an averaged F1 scores (0.9938 95% CI 0.9923–0.9952), AUC ROC score (0.9999 95% CI 0.9998–1.0000), sensitivity (0.9938 95% CI 0.9910–0.9965) and specificity (0.9979 95% CI 0.9970–0.9988) in identifying the COVID-19 patients among normal, moderate, severe and critical group. It is capable in identifying crackles, wheezes, phlegm sounds with an averaged F1 scores (0.9475 95% CI 0.9440–0.9508), AUC ROC score (0.9762 95% CI 0.9848–0.9865), sensitivity (0.9482 95% CI 0.9393–0.9578) and specificity (0.9835 95% CI 0.9806–0.9863). Conclusions Our model is accurate and efficient in automatically diagnosing COVID-19 according to different categories, laying a promising foundation for AI-enabled auscultation diagnosing systems for lung diseases in clinical applications.

3.
Nat Methods ; 18(5): 499-506, 2021 05.
Article in English | MEDLINE | ID: covidwho-1220210

ABSTRACT

Competitive coevolution between microbes and viruses has led to the diversification of CRISPR-Cas defense systems against infectious agents. By analyzing metagenomic terabase datasets, we identified two compact families (775 to 803 amino acids (aa)) of CRISPR-Cas ribonucleases from hypersaline samples, named Cas13X and Cas13Y. We engineered Cas13X.1 (775 aa) for RNA interference experiments in mammalian cell lines. We found Cas13X.1 could tolerate single-nucleotide mismatches in RNA recognition, facilitating prophylactic RNA virus inhibition. Moreover, a minimal RNA base editor, composed of engineered deaminase (385 aa) and truncated Cas13X.1 (445 aa), exhibited robust editing efficiency and high specificity to induce RNA base conversions. Our results suggest that there exist untapped bacterial defense systems in natural microbes that can function efficiently in mammalian cells, and thus potentially are useful for RNA-editing-based research.


Subject(s)
CRISPR-Cas Systems , RNA Editing , RNA, Bacterial , Animals , Bacterial Proteins , Cell Line , Cloning, Molecular , Databases, Nucleic Acid , Dogs , Humans , Mice , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL